Analysis of the Potential of Wind Energy Generation at Different Rotor Diameters in the Sudano-Sahelian Zone of Nigeria

I.P. Ifabiyi¹, K.R. Ajao², A. Adeniyi³

^{1,3} Department of Geography and Environmental Management, University of Ilorin, Nigeria
² Department of Mechanical Engineering, University of Ilorin, Nigeria

Abstract: This study examines the potential of wind energy generation in the Sudano- Sahelian Zone of Nigeria under different rotor diameters. Data on wind speed, were obtained for 40 years (1973- 2012) from the records of Nigerian Meteorological Agency, Oshodi, Lagos. Mathematical Model was used to compute wind energy potential at 45m, 90m and 126m rotor diameters. The study revealed that about 89% of annual wind speed was found to be above the threshold of 3.0m/s for wind turbine operations. Wind energy potential in the area is high, varying from 704kW in Yelwa to 3,659kW in Kano, at a turbine rotor diameter of 126m. This could generate 512,260kW of electricity with two wind farms of 70 wind turbines each. The study concluded that the Sudano-Sahelian Zone has enormous potential for wind energy generation. It is therefore, recommended that the advantage of wind resources be explored by government through private public partnership initiative to complement existing sources of power generation for rapid socio-economic development in Nigeria.

Keywords: wind energy, rotor diameters, mathematical model, wind speed, wind turbine, energy potential, wind farm.

1. INTRODUCTION

Wind energy is the kinetic energy derived from air in motion. Wind energy is one of the fastest growing renewable energy which could favorably serve as alternative source of energy to thermal or hydropower source of energy and other non-renewable sources of energy. It is a clean source of energy, environmentally friendly and is generated by converting wind kinetic energy into mechanical and electrical energy using wind turbines. The potential power obtainable from wind is proportional to the cube of wind speed.

According to NIMET, (2009) report, which was centered on the result of using 40 years (1968-2007) available mean wind data from the whole forty-four wind stations across the states of the federation, Nigeria has good wind resources. Ajayi, (2007) reported that the rank of potential for annual wind energy flux density for Nigeria is in the order of North-Central, South–East, South–South and South–West zones, respectively, with the first three political zones of the rank contributing about 86% of the total wind energy in Nigeria as calculated from the findings. Ajayi, et al. (2011) in their study on the assessment of wind power potential and wind electricity generation using WECS in Iseyin and Saki, in south west of Nigeria, also reported that the two sites have potential to generate MWh to GWh of energy at an average cost/kwh of between \notin (0.025 and 0.049).

Lehmeyer an International Consultants, (2005) reported that wind energy reserve in Nigeria at 10m height shows that some locations have wind regime between 1.0 and 5.1 m/s, hence, the country can be classified under poor/moderate wind regime. However, wind speeds in the country are generally weak in the south except for the coastal regions and offshore areas. The offshore areas from Lagos through Ondo, Delta, Rivers, Bayelsa to Akwa Ibom states were reported to have

the capacity to generate wind energy throughout the year. Wind speed is reported strongest in the hilly regions of the North, while the mountainous areas of the middle belt and northern fringes show a high potential of wind energy. However, as a result of varying topography and roughness of the country, large differences may occur within the same area. The values of the wind speed in Nigeria ranges from 1.4 to 3.0 m/s in the southern areas to 4.0-5.12 m/s in the extreme North, at 10m height. Peak wind speed generally occurs between April and August for most locations in the analysis (Ajayi, 2009). Adekoya and Adewale, (1992) analyzed wind speed data of 30 stations in Nigeria, the result shows that the annual mean wind speeds and power flux densities vary from 1.5-4.1 m/s to 5.7-22.5W/m² respectively, while Fagbenle and Karayiannis (1994) did an analysis of 10-years wind data from 1979–1988, focusing on the surface and upper winds as well as the maximum gusts. Ngala, *et* al., (2007) also did a statistical analysis of wind energy potential in Maiduguri, Borno state, using the Weibull distribution analysis and 10 year (1995–2004) wind data, while Bugaje, (2006) examined the renewable energy usage in Africa using Nigeria, South Africa, Egypt and Mali as case studies. Each of these reported that Nigeria is blessed with wind resource and opportunity for harvesting wind for energy production, especially at the main northern states, mountainous parts of the central and eastern states and also offshore areas where wind is adequately available throughout the year (Ajayi, et al., 2009).

Accurate measurement and assessment is required in the development and ultilization of wind resource for energy generation. There are three important stages in the assessment of wind energy potentials; these are resource assessment, hardware development and installation, and also electricity production and distribution. The first stage, that is, the resource assessment stage, is very important to the other two stages and also to wind energy technology. This stage determines the turbine selection criteria based on the turbine's wind velocity technical rating of cut-in, cut-out and rated wind speeds and also determines the magnitude of wind power that can likely be generated from a location based on the historical wind speed assessment results (Ajayi, et al., 2011b). Similarly, Ajayi, et al., (2012) reported that assessing a location's wind resources for energy generation involves not only profiling the wind power potential but also involves evaluating two important wind speeds that will help in the determination of the wind speed rating of a suitable wind turbine.

In Nigeria, there are relatively sparse researches by Geographer on the computation of wind energy potential in the study area while most of the published works on wind energy potential are done by Engineers. In addition, most of the works have also not discussed wind energy potential under different rotor diameter. Hence, this study attempts to examine the potential of wind energy generation in the Sudano-Sahelian Zone of Nigeria, under different rotor diameters.

2. THE STUDY AREA

The Sudano-Sahelian zone in Nigeria is located between longitude 4° and 14°E and latitude 10° and 14°N and lies immediately to the south of Sahara desert. It is located in the northern part of Nigeria and stretches from the Sokoto plains to the Chad basin (Odekunle, et al, 2008). The zone span roughly through Sokoto, Zamfara, Katsina, Kano, Jigawa, Yobe, and Borno states respectively (Jidauna et al, 2011). The area also includes part of Bauchi.

Figure 1.1 shows the map of the study area. The Sudano-Sahelian zone of Nigeria occupies almost one-third of the total land area of Nigeria (Odekunle, et al, 2008). The zone houses over one-quarter of the Nigeria population (FMEN, 2006). According to the 2006 population census, the total population of the zone is 32,954538. The choice of the study area is based on the vegetation characteristics and climatic condition of the zone. The zone is predominantly savannah area with grasses and short trees which have little impact or effect on wind speed and direction. In term of climate, wind speed is relatively high in the area because of its closeness to the Sahara desert.

The climate of Sudano-Sahelian zone of Nigeria is dominated by the influence of three major meteorological features; namely, the tropical maritime (mT) air mass, the tropical continental (cT) air mass, and the equatorial easterlies (Ileoje, 1981). The first two air masses (mT and cT) meet along a slanting surface called the Inter-Tropical Discontinuity (ITD). The equatorial easterlies are rather erratic and relatively cool air masses from east in the upper troposphere along the ITD. The position of the ITD is a function of the season with considerable short-period fluctuations (Theophilus, et al, 2008). The climate of the area is characterized with alternating wet and dry seasons. The temperature of the zone is high throughout the year with a mean minimum value of about 23° C and mean maximum of about 4° C (Ojoye, 2008) except during the cold harmattan and rainy season. In the rainy season, temperature is fairly steady because cloudiness and humidity prevent back radiation, thus the diurnal range of temperature is relatively small and it is about 2° C (Oyebande,

2000). In the dry season the much back radiation is witnessed in the night and it tends to lower night temperature values. Thus, a high diurnal range of temperature sometimes as high as 12° C is observable (Ojoye, 2012). The average temperature in the hot season is about 40.6°C, while the annual rainfall is less than 75cm. The rainy seasons are usually short, which is often within the ranges of four to five months. Owing to seasonal fluctuations, it could even drop to less than four months. Rainfall is marginal in the area. The rainfall in the region is less than 1000mm per annum in only about five months in the year especially between May and October. According to Ayoade, (2006) wind speeds in Nigeria are generally gentle to moderate except at exposed location or at the approach of rainstorms when speed may increase to over 30 knots (55.6 km/hr) particularly in the northern parts of the country. Wind erosion is rampart in the zone. This implies that wind speed is relatively high. In Sokoto state for example, the normal wind velocities range from 1 to 10 knots while some times it may be accompanied by gust of up to 40 knots (Mamman, 2002). Ajayi,et al. (2010) reported that monthly wind speed vary widely in Zamfara State.

The vegetation of the Sudano-Sahelian zone is the Savanna type consisting of Sudan and Sahel with the density of trees and other plants decreasing as one move northwards (Abaje, 2007). It is characterised by abundant short grasses of 1.5-2m and few stunted trees hardly above 15m (on line Nigeria, 2002). The Sahel savanna on the other hand, is the last vegetation belt to the north of Nigeria with proximity to the fringes of the fast-encroaching Sahara desert. It is characterised by very short grasses of not more than one metre high located in-between sand dunes. The area is dominated by several varieties of the acacia and date- palms.

The Sudano-Sahelian zone consists of highlands and plains (Chad and Sokoto Plains). Some of the highland in the zone includes Biu plateau, Mandara mountain, Shara hill and Bamgi hill. According to Ogezi, (2002) the zone lies within the areas with mountain, plateau, hills, ridges, volcanic cones and inselbergs. Ologe, (2002) reported that the Chad plains is an extensive relief made up of recent deposits of sand and clay with an elevation of about 500m. Generally, the topography of the zone is mainly flat and mostly lies between 200 and 400m in elevation. Several isolated plateau and mountain ranges rise from the Sahel, but are designated as separate eco-regions because their flora and fauna are distinct from the surrounding lowland (World Wildlife Fund, 2001).

The zone is characterized with a predominantly rural and peasant population. These are people whose primary occupation is mainly rain-fed farming (with few exceptional areas where irrigation is practised) and animal rearing (Dabi and Jidaunna, 2010). The major agricultural activity in the zone is pastoral farming. The zone supports about 90% of the cattle population, about two-third of the goats and sheep and almost all the donkeys, camels, and horses found in the country. Cereals, cowpeas, groundnut and cotton are the main crops grown in the region (FMEN, 2006).

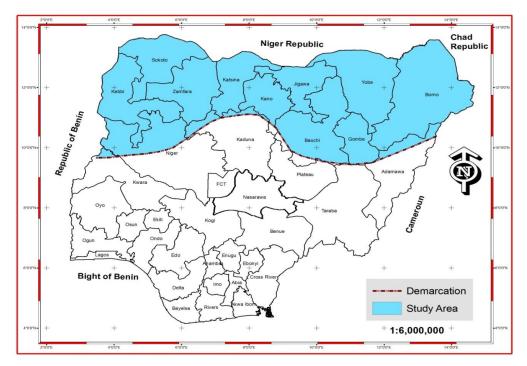


Figure 1.1 Map of Nigeria showing the study area, Sudano-Sahelian Zone (Extracted from Iloeje, 1982)

3. MATERIALS AND METHOD

There are two main parameters that are used in wind observations. These parameters are wind speed and wind direction. However, for this study, wind speed was used in the analysis of the potential of wind energy generation. Monthly mean wind speed data at 10m meteorological height were collected from eight locations where meteorological station are located in the Sudano-Sahelian Zone, Nigeria, for a period of 40 years (1973-2012). These locations are, Gusau, Kano, Katsina, Yelwa, Sokoto, Nguru, Maiduguri, and Bauchi. The wind speed data were collected from Nigeria Meteorological Agency, Lagos.

3.1 Data Analysis:

A mathematical model was used to compute wind energy potential at 45m, 90m and 126m rotor diameters. The choice of these rotor diameters was based on the fact that the medium scales turbine ranges from 12m to 45m. Also, the world largest wind turbine rotor blade diameter is 126m (REUK, 2013). Different rotor blade diameters were used in order to show variations in the wind energy output in relation to the turbine blade diameter.

Wind powers in the area were therefore, computed using the equation:

$$P = \frac{1}{2}\rho A V^3 C_p \dots \text{ eq. 1}$$

where

P = available wind power (W/m²)

 $\rho = air density (1.225 kg/m^3) at sea level$

A = Swept Area of Blades (m²)

V = wind speed (m/s)

 $C_p = Power Coefficient (0.40)$

Since no wind turbine can operate at the theoretical maximum power coefficient of 0.59%, the average of Betz values of 0.35-0.45 was used as the value for the theoretical power coefficient.

3.2 Results and Discussion:

3.2.1 Frequency of Wind Speed in the Sudano-Sahelian Zone of Nigeria (1973-2012):

The frequency in the occurrence of monthly wind speed is presented in Table 1. In Yelwa, 57.9% (278) of the wind speed falls between 3.0 and 5.9m/s while in Sokoto 54.6% (262) falls between 6.0 and 11.9m/s. The highest percentage of wind speed record in Gusau, (48.1%) falls between 3.0 and 5.9m/s while in Katsina the highest percentage (45%) between 6.0 and 8.9m/s. Bauchi, Nguru and Maiduguri have their highest percentage of wind speed 48.5%, 47.7% and 54.8% respectively between 3.0 and 5.9m/s while that of Kano, (45.5%) falls between 6.0 and 8.9m/s. Generally, in all the stations, greater percentage of wind speed were above 3.0m/s. Figure 2 shows the frequency of the occurrence of wind speed

	0.0 -	- 2.9	3.0 –	5.9	6.0 –	8.9	9.0 –	11.9	12.0 -	14.9	15.0 -	17.9
	(m/s)		(m/s)	(m/s)		(m/s)		(m/s)		(m/s)		
Stations	Freq.	%	Freq.	%	Freq.	%	Freq.	%	Freq.	%	Freq.	%
1. Yelwa	131	27.3	278	57.9	70	14.6	1	0.2	0	0.0	0	0.0
2. Sokoto	4	0.8	105	21.9	262	54.6	102	21.3	7	1.5	0	0.0
3. Gusau	20	4.2	231	48.1	207	43.1	21	4.4	0	0.0	1	0.2
4. Katsina	9	1.9	181	37.7	219	45.6	55	11.5	15	3.1	1	0.2
5. Kano	3	0.6	89	18.5	223	46.5	143	29.8	21	4.4	1	0.2
6. Bauchi	111	23.1	233	48.5	113	23.5	23	4.8	0	0.0	0	0.0
7. Nguru	126	26.3	229	47.7	114	23.8	11	2.3	0	0.0	0	0.0
8. Maiduguri	28	5.8	263	54.8	187	39.0	2	0.2	0	0.0	0	0.0
Total	432	11.3	1609	41.9	1395	36.3	358	9.3	43	1.1	3	0.1

Table 1: Frequency	of wind Speed	(1973-2012)
rubic 1. requency	or wind opecu	

International Journal of Social Science and Humanities Research ISSN 2348-3164 (online) Vol. 5, Issue 2, pp: (430-443), Month: April - June 2017, Available at: <u>www.researchpublish.com</u>

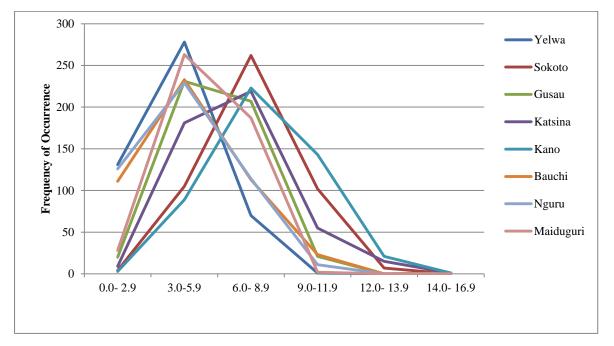


Figure 2: Frequency of Wind Speed in Sudano-Sahelian Zone of Nigeria Geographical Pattern of Wind Energy Potential in kW in the SSZ, Nigeria (1973-2012)

i. Yelwa:

Table 2 shows the amount of wind energy potential in Yelwa from 1973-2012 for different turbine rotor diameter. From the table with 45m rotor diameter, 90kW of energy can be generated in 2008 while 11kW of energy can be produced in 1982, 1984 and 1995. Similarly, 90m rotor diameter is capable of producing 259kW of energy in 2008 and 45kW in 1982 and 1984 while 126m rotor diameter can generate 704kW in 2008 and 88kW in 1982, and 1984. The table reveals that the more the rotor diameter the more energy produced. Generally, there is variation in the amount of wind energy that can be produced in the area. The results revealed that there is high potential of generating wind energy in Yelwa.

S/N	Year	45	m	90	m	126 m	S/N	Year	45 m	90 m	126 m blade
		blade		blade		blade			blade	blade	
1.	1973	20		81		159	21.	1993	34	136	266
2.	1974	13		50		98	22.	1994	17	67	132
3.	1975	22		87		170	23	1995	11	46	89
4.	1976	39		155		303	24.	1996	8	31	61
5.	1977	39		155		303	25.	1997	12	47	92
6.	1978	40		160		313	26.	1998	13	52	101
7.	1979	34		136		266	27.	1999	15	59	116
8.	1980	28		111		218	28.	2000	3	13	26
9.	1981	12		46		91	29.	2001	8	32	62
10.	1982	11		45		88	30.	2002	78	314	614
11.	1983	12		47		92	31.	2003	49	197	386
12.	1984	11		45		88	32	2004	38	153	299
13.	1985	24		98		191	33.	2005	66	262	514
14.	1986	27		110		215	34.	2006	73	293	575
15.	1987	28		114		223	35.	2007	63	254	497
16.	1988	24		95		185	36.	2008	90	359	704
17.	1989	14		57		112	37.	2009	65	261	511
18.	1990	23		92		181	38.	2010	73	292	572
19.	1991	30		121		238	39.	2011	20	81	159
20.	1992	34		136		266	40.	2012	13	50	96

ii. Sokoto:

Table 3 the highest wind output that can be produced with 45m turbine rotor diameter is 346kW in 1984 and the smallest is 72 kW in 1975 and 1993. For 90m and 126m rotor diameter, the highest energy that can be produced was 1383kW and 2711kW in 1984 respectively. The table also reveals that there is variation in the wind energy output in the station. Ajayi et al. (2011) using 21 years monthly wind speed, also reported that Sokoto has the potential of generating between 2.1 and 10.8GWh per annum. The outcome of the findings showed that Sokoto has a great potential for generating wind energy.

S/N	Year	45 m blade	90 m blade	126 m	S/N	Year	45 m	90 m	126	m
				blade			blade	blade	blade	
1.	1973	121	486	952	21.	1993	72	287	563	
2.	1974	135	542	1061	22.	1994	134	535	1048	
3.	1975	72	289	566	23.	1995	225	900	1766	
4.	1976	97	390	764	24.	1996	184	737	1444	
5.	1977	85	342	670	25.	1997	179	717	1406	
6.	1978	95	379	742	26.	1998	189	756	1483	
7.	1979	186	745	1461	27.	1999	123	492	965	
8.	1980	218	872	1709	28.	2000	154	616	1208	
9.	1981	294	1174	2302	29.	2001	165	660	1294	
10.	1982	214	856	1678	30.	2002	153	614	1203	
11.	1983	328	1311	2570	31.	2003	129	516	1012	
12.	1984	346	1383	2711	32.	2004	211	847	1660	
13.	1985	232	927	1817	33.	2005	200	801	1570	
14.	1986	189	757	1483	34.	2006	101	405	793	
15.	1987	250	998	1957	35.	2007	109	438	858	
16.	1988	212	847	1660	36.	2008	117	469	919	
17.	1989	241	964	1889	37.	2009	129	516	1012	
18.	1990	198	792	1552	38.	2010	170	682	1336	
19.	1991	119	473	931	39.	2011	129	516	1012	
20.	1992	80	322	631	40.	2012	203	813	1594	

 Table 3: Wind Energy Potential in Sokoto from 1973-2012 (kW)

Source: Author's Field work, (2015)

iii. Gusau:

Table 4 shows the amount of potential wind energy in Gusau from 1973-2012 for 45m, 90m and 126m turbine rotor diameters. From the table with 45m rotor diameter, 206kW of energy can be generated in 1988 while 35kW of energy can be produced in 2008. Similarly, 90m rotor diameter is capable of producing 138kW of energy in 2008 while 126m rotor diameter can generate 1612kW in 1988 and 271kW in 2008. The table shows that the more the rotor diameter the more energy produced. Generally, there is variation in the amount of wind energy that can be produced in the area. The outcome of the findings showed that Gusau has a great potential for generating wind energy. Ajayi et al. (2011) also reported that Gusau is a suitable site for generating wind power.

S/N	Year	45 m blade	90	m	126	m	S/N	Year	45 m	90 m	126 m blade
			blade		blade				blade	blade	
1.	1973	71	286		560		21.	1993	77	308	605
2.	1974	63	255		500		22.	1994	73	294	575
3.	1975	61	245		481		23.	1995	84	337	660
4.	1976	54	217		425		24.	1996	103	412	808
5.	1977	46	186		364		25.	1997	119	477	935
6.	1978	49	197		386		26.	1998	85	340	667
7.	1979	84	337		660		27.	1999	87	347	680
8.	1980	44	176		344		28.	2000	76	304	596

 Table 4: Wind Energy Potential in Gusau from 1973-2012 (kW)

International Journal of Social Science and Humanities Research ISSN 2348-3164 (online) Vol. 5, Issue 2, pp: (430-443), Month: April - June 2017, Available at: www.researchpublish.com

9.	1981	54	214	420	29.	2001	124	494	969
10.	1982	117	467	915	30.	2002	96	382	749
11.	1983	82	328	643	31.	2003	56	223	437
12.	1984	88	350	687	32.	2004	74	296	581
13.	1985	66	264	517	33.	2005	61	243	476
14.	1986	82	327	640	34.	2006	41	164	321
15.	1987	179	714	1400	35.	2007	45	180	353
16.	1988	206	822	1612	36.	2008	35	138	271
17.	1989	157	629	1233	37.	2009	63	252	495
18.	1990	147	587	1150	38.	2010	51	204	400
19.	1991	93	371	728	39.	2011	49	197	386
20.	1992	82	328	644	40.	2012	84	337	660

Source: Author's Field work, (2015)

iv. Katsina:

Table 5 shows the power converted from the wind into rotational energy in the turbine of different rotor blades diameter in Katsina from 1974-2012. The highest wind energy that can be produced in the station was 374kW, 1494kW and 2928kW for 45m, 90m, and 126m rotor blade diameters respectively. On the other hand the lowest wind energy that can be produced in the station with rotor blade diameters 45m, 90m, and 126m is 27Kw, 108kW and 212kW respectively. This implies that Katsina is a good site for generating wind energy. Variation exists in the wind energy output in the station in the years under review. A distinct increase occurred in the amount of potential energy generated from 1984 to 1997.

S/N	Year	45 m blade	90 m blade	126 m	S/N	Year	45 m	90 m	126 m
				blade			blade	blade	blade
1.	1973	46	183	359	21.	1993	145	581	1140
2.	1974	27	108	212	22.	1994	145	579	1136
3.	1975	62	249	489	23.	1995	207	828	1623
4.	1976	51	205	400	24.	1996	230	921	1804
5.	1977	111	444	870	25.	1997	163	652	1278
6.	1978	91	364	714	26.	1998	53	212	415
7.	1979	74	295	578	27.	1999	44	176	344
8.	1980	78	310	608	28.	2000	59	236	463
9.	1981	77	307	602	29.	2001	114	454	890
10.	1982	99	395	775	30.	2002	119	475	931
11.	1983	90	361	707	31.	2003	97	390	764
12.	1984	225	901	1766	32.	2004	135	539	1057
13.	1985	260	1041	2040	33.	2005	109	438	858
14.	1986	259	1037	2033	34.	2006	68	271	531
15.	1987	374	1494	2928	35.	2007	54	218	427
16.	1988	300	1201	2356	36.	2008	73	290	569
17.	1989	310	1241	2434	37.	2009	59	237	465
18	1990	271	1084	2125	38.	2010	44	176	344
19.	1991	274	1095	2146	39.	2011	73	290	569
20	1992	236	943	1850	40.	2012	259	1037	2033

Table 5: Wind Energy Potential in Katsina from 1973-2012 (kW)

Source: Author's Field work, (2015)

v. Kano:

According to table 6 the highest potential wind energy in Kano with turbine of 45m rotor diameter is 467kW in 1993 and the smallest was 36kW in 2003. For 90m and 126m rotor diameter, the highest energy that can be produce was 1867kW and 3659kW in 1993 respectively. The implication of this is that Kano has great potential for generating wind energy. The table reveals that there is variation in the wind energy output in the area within the years under review.

S/N	Year	45 m blade	90 m blade	126 m blade	S/N	Year	45 m blade	90 m blade	126 m blade
1.	1973	71	284	557	21.	1993	467	1867	3659
2.	1974	59	236	463	22.	1994	415	1659	3251
3.	1975	71	284	557	23.	1995	438	1753	3436
4.	1976	95	381	746	24.	1996	353	1414	2770
5.	1977	71	284	557	25.	1997	248	991	1943
6.	1978	103	412	808	26.	1998	194	777	1523
7.	1979	164	658	1289	27.	1999	106	424	831
8.	1980	233	930	1824	28.	2000	238	954	1869
9.	1981	187	748	1467	29.	2001	235	940	1843
10	1982	272	1088	2132	30.	2002	244	974	1909
11.	1983	352	1409	2762	31.	2003	36	145	284
12.	1984	300	1202	2356	32.	2004	85	340	666
13.	1985	300	1202	2356	33.	2005	79	317	621
14.	1986	246	984	1930	34.	2006	58	232	455
15.	1987	239	957	1876	35.	2007	75	301	590
16.	1988	298	1194	2340	36.	2008	91	368	721
17.	1989	308	1234	2418	37.	2009	82	328	643
18.	1990	293	1171	2295	38.	2010	85	338	663
19.	1991	293	1171	2295	39.	2011	238	954	1869
20.	1992	411	1644	3223	40.	2012	235	940	1843

 Table 6: Wind Energy Potential in Kano from 1973-2012 (kW)

Source: Author's Field work, (2015)

vi. Bauchi:

Table 7 shows the wind energy output in Bauchi from 1973-2012 for 45m, 90m and 126m turbine rotor diameters. From the table with 45m rotor diameter, 198kW of energy can be generated in 1975 while 5kW of energy can be produced in 2002, 2003, and 2011. Similarly, 90m rotor diameter is capable of producing 792kW of energy in 1975 and 19kW in 2002 while 126m rotor diameter can generate 1552kW in 1975 and 37kW in 2002. This implies that Bauchi is a good site for generating wind energy. The table shows that potential wind energy varies from one year to another. Generally, there is variation in the wind energy potential in Bauchi.

S/N	Year	45 m	90 m	126 m	S/N	Year	45 m	90 m blade	126 m blade
1	1072	blade	blade	blade	01	1002	blade 6	25	40
1.	1973	138	553	1084	21.	1993	-	25	48
2.	1974	159	634	1242	22.	1994	39	155	303
3.	1975	198	792	1552	23.	1995	21	83	162
4.	1976	148	594	1164	24.	1996	26	106	207
5.	1977	98	391	768	25.	1997	32	127	248
6.	1978	70	280	548	26.	1998	29	118	231
7.	1979	70	278	545	27.	1999	34	136	267
8.	1980	64	256	503	28.	2000	36	145	284
9.	1981	72	289	566	29.	2001	67	269	528
10.	1982	69	277	542	30.	2002	5	19	37
11.	1983	55	219	430	31.	2003	5	20	39
12.	1984	92	370	725	32.	2004	23	90	177
13.	1985	66	264	516	33.	2005	66	265	519
14.	1986	43	171	336	34.	2006	55	220	432
15.	1987	26	106	207	35.	2007	108	430	843
16.	1988	28	114	223	36.	2008	68	272	531
17.	1989	21	85	166	37.	2009	43	173	340
18.	1990	13	50	98	38.	2010	77	309	605
19.	1991	26	104	204	39.	2011	5	20	39
20.	1992	9	36	70	40.	2012	23	90	177

 Table 7: Wind Energy Potential in Bauchi from 1973-2012 (kW)

vii. Nguru:

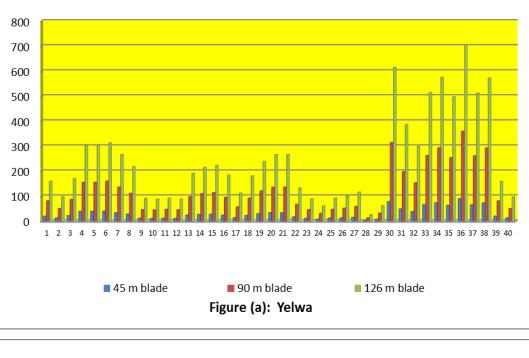
According to table 8 the wind energy potential in Nguru with turbine of 45m rotor diameter is 167kW in 2006 and 2kW in 2004. For 90m and 126m rotor diameter, the highest energy that can be produce is 668kW and 1310kW in 2006 respectively. The outcome of the results shows that Nguru has the potential for generating wind energy. The table reveals that there is variation in the wind energy output in the area within the years under review.

S/N	Year	45 m blade	90 m	126 m	S/N	Year	45 m	90 m	126 m
			blade	blade			blade	blade	blade
1.	1973	5	20	39	21.	1993	25	100	196
2.	1974	45	181	355	22.	1994	31	123	241
3.	1975	50	202	396	23.	1995	27	107	211
4.	1976	106	422	827	24.	1996	26	102	200
5.	1977	96	382	749	25.	1997	35	140	275
6.	1978	120	479	940	26.	1998	135	542	1061
7.	1979	135	542	1061	27.	1999	26	104	204
8.	1980	37	147	288	28.	2000	50	202	396
9.	1981	58	232	455	29.	2001	1	6	11
10.	1982	63	252	495	30.	2002	0.4	2	3
11.	1983	41	165	323	31.	2003	0.1	0.5	1
12.	1984	13	51	100	32.	2004	2	8	16
13.	1985	13	51	100	33.	2005	84	337	660
14.	1986	14	55	108	34.	2006	167	668	1310
15.	1987	15	61	119	35.	2007	19	75	147
16.	1988	13	58	113	36.	2008	70	281	551
17.	1989	15	60	118	37.	2009	105	418	820
18.	1990	14	54	106	38.	2010	127	508	995
19.	1991	16	66	129	39.	2011	27	107	211
20.	1992	20	81	159	40.	2012	26	102	200

 Table 8: Wind Energy Potential in Nguru from 1973-2012 (kW)

Source: Author's Field work, (2015)

viii. Maiduguri:


Table 9 shows the wind energy output in Maiduguri from 1973-2012 for different turbine rotor diameter. From the table with 45m rotor diameter, 104kW of energy can be generated in 1976 while 11kW of energy can be produced in 2004. Similarly, 90m rotor diameter is capable of producing 416kW of energy in 1976 and 44kW in 2004 while 126m rotor diameter can generate 87kW in 2004 and 816kW in 1976. Generally, the result revealed that Maiduguri has a high potential for generating wind energy. Table 8.8 also reveals that wind energy potential varies with turbine rotor blade diameter. The wider the rotor diameter the more the energy produced. Generally, there is variation in the amount of wind energy that can be produced in Maiduguri.

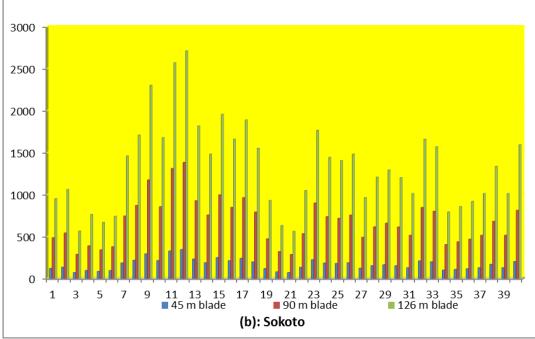
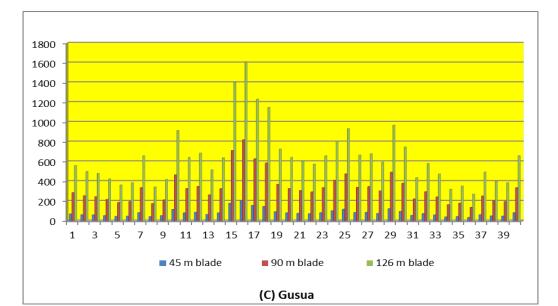
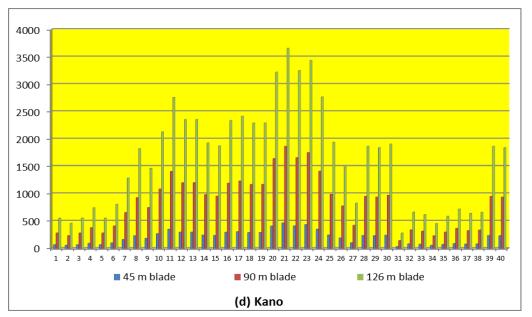
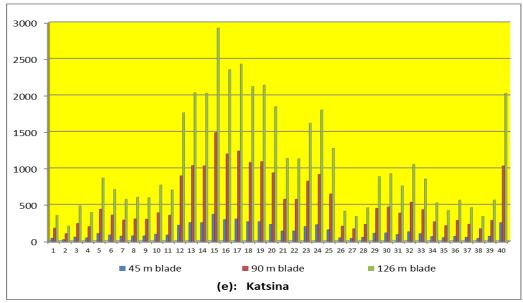
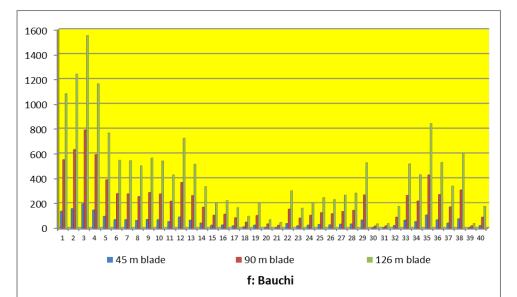

S/N	Year	45 m blade	90 m blade	126 m	S/N	Year	45 m	90 m	126 m
				blade			blade	blade	blade
1.	1973	47	187	366	21.	1993	34	137	269
2.	1974	63	254	497	22.	1994	57	227	445
3.	1975	94	377	739	23.	1995	57	228	447
4.	1976	104	416	816	24.	1996	57	228	447
5.	1977	85	342	670	25.	1997	51	206	403
6.	1978	129	514	1008	26.	1998	35	138	271
7.	1979	108	434	851	27.	1999	31	124	243
8.	1980	95	379	742	28.	2000	74	295	578
9.	1981	65	259	508	29.	2001	132	528	1034

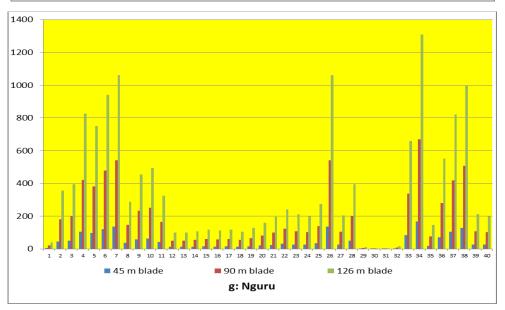
 Table 9: Wind Energy Potential in Maiduguri from 1973-2012 (kW)

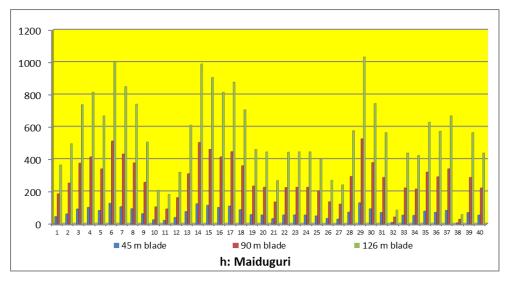

International Journal of Social Science and Humanities Research ISSN 2348-3164 (online) Vol. 5, Issue 2, pp: (430-443), Month: April - June 2017, Available at: <u>www.researchpublish.com</u>


10.	1982	27	107	209	30.	2002	95	381	746
11.	1983	23	94	184	31.	2003	72	289	566
12.	1984	41	164	321	32.	2004	11	44	87
13.	1985	78	312	612	33.	2005	56	224	440
14.	1986	126	505	991	34.	2006	54	217	425
15.	1987	116	463	907	35.	2007	80	322	631
16.	1988	104	416	816	36.	2008	73	293	575
17.	1989	112	448	878	37.	2009	85	342	670
18.	1990	90	361	707	38.	2010	8	30	59
19.	1991	59	236	462	39.	2011	72	289	566
20.	1992	57	228	447	40.	2012	56	224	440




International Journal of Social Science and Humanities Research ISSN 2348-3164 (online) Vol. 5, Issue 2, pp: (430-443), Month: April - June 2017, Available at: <u>www.researchpublish.com</u>





International Journal of Social Science and Humanities Research ISSN 2348-3164 (online) Vol. 5, Issue 2, pp: (430-443), Month: April - June 2017, Available at: <u>www.researchpublish.com</u>

Figures (a-h): Geographical Pattern of Potential Wind Energy Estimates for Different Rotor Diameter in the Sudano-Sahelinan Zone of Nigeria

3.2.2 Implication for Energy Generation:

The result of the analysis revealed that the eight stations in this study have annual wind regime between 2.0m/s and 10.2m/s and monthly wind regime between 0.68m/s and 15.7m/s. Average annual wind speed in the zone over the 40year was 5.83m/s. This paper concluded that the eight stations that make up the zone are potential wind farm areas. This is because most wind turbines start generating electricity at wind speed of around 3-4m/s (www.bwea.com). In addition, with 45m 90m and 126m rotor diameters, an average of 100.57kW, 402.41kW and 788.74kW of electricity can be generated in the zone respectively. This implies that a wind farm of about 60 turbines can produce an average of 6.03MW, 24.1MW, and 47.3MW respectively. These values show that the Sudano-Sahelian Zone of Nigeria has a strong wind energy potential of generating electricity especially when 126m rotor diameter is used.

4. CONCLUSION

The potential of wind energy generation has been examined in this research work. The results revealed that wind energy potential in the area is high if larger rotor diameter and efficient wind turbines are used. Eight-nine percent of annual wind speed was found to be above the threshold unit of 3.0m/s for wind turbine operations. About 512,260 kW of electricity can be generated in the area. Therefore, both the government and the private sector should take the advantage of the abundant wind resource in the area for energy generation. In the light of the findings of this study, it is therefore recommended that Government and private establishment should invest in wind energy in the area to complement the energy supplied to the Nigeria National grid.

REFERENCES

- [1] Abaje, I.B. (2007). Introduction to Soils and Vegetation. Kafanchan: Personal Touch Productions.
- [2] Adekoya, L.O. and Adewale, A.A.(1992) Wind Energy Potential of Nigeria, *Renewable Energy*, 2 (1) 35–39.
- [3] Ajayi, O.O.(2007) Modelling the Wind Energy Potential of Nigeria. Covenant University, Ota.
- [4] Ajayi, O.O.(2009) Assessment of Utilization of Wind Energy Resources in Nigeria, *Energy Policy*, 37: 750–753.
- [5] Ajayi ,O.O.,Fagbenle,R.O., Katende, J. and Omotosho, O.A. (2010) Wind Energy Potential for Generation of a local Site in Gusau, Nigeria. *International Journal of Energy for a Clean Environment*. 16, (1-4), 99-116.
- [6] Ajayi ,O.O.,Fagbenle,R.O.,and Katende, J (2011) Wind Profile Characteristics and Econometrics Analysis of Wind Power Generation of a Site in Sokoto State, Nigeria. *Energy Science Technology* 1: 54-66.
- [7] Ajayi ,O.O.,Fagbenle,R.O.,Katende, J.,and Okeniyi,J.O.(2011b) Availability of Wind Energy Resource Potential for Power generation at Jos, Nigeria. *Frontial Energy* 5: 376-385
- [8] Ajayi ,O.O.,Fagbenle,R.O., Katende, J., Omotosho, O. A. and Samson Assa (2012) Analytical Predictive Model for Wind Energy Potential Estimation: A Model for Pre-assessment Study. *Journal of Applied Sciences* 12 (15) 450-458
- [9] Ayoade, J.O. (2006) A note on Spatial and Seasonal Variations in Wind Speed over Nigeria. Wiley on line Library.
- [10] Bugaje, I. M. (2006) Renewable for Sustainable Development in Africa: A Review, *Renewable Sustainable Energy Rev.* 10 (6): 603–612.
- [11] Dabi D. D and Jidaunna, G. G. (2010) Climate Change and Local Perception In Selected Settlement in the Sudano-Sahelian Region of Nigeria, *Journal of Environmental Sciences and Resource Management*. 2
- [12] Fagbenle, R.O. and Karayiannis, T.G.(1994) On the Wind Energy Resources of Nigeria. International Joournal of Energy Research. 18 (5): 493–508.
- [13] FMEN, (2006) National Action Programme to Combat Desertification. Federal Ministry Environment of Nigeria. http://ww.uncc.in/actionprogramme/Africa/national/2001/nigerial-eng.pdf
- [14] Jidauna, G.G.; Dabi, D.D., and Dia, R.Z. (2011) The Effect of Climate Change on Agricultural Activities in Selected Settlement in the Sudano- Sahelian Region of Nigeria Archives of Applied Science Research 3 (6): 154-165

- [15] Lehmeyer (International) Consultants, (2005). Report on Nigeria Wind Power Mapping Rojects, Federal Ministry of Science and Technology, Abuja.
- [16] Mamman, A.B.(2002) Sokoto Africa Atlases. Atlas of Nigeria.
- [17] Ngala, G.M., Alkali, B., and Aji, M.A.(2007) Viability of Wind Energy as a Power Generation Source in Maiduguri, Borno State, Nigeria, *Renewable Energy*.32 (13): 2242–2246.
- [18] Nigeria Meteorological Agency (NIMET) (2009), Meteorological Data, Nigeria Meteorological Agency, Oshodi.
- [19] Odekunle, T.O., Andrew, O. and Aremu, S.O. (2008). Towards a Wetter Sudano-Sahelian Ecological Zone in Twenty First Century Nigeria. Weather, 63(3).
- [20] Ogezi, E. (2002) Geology, in Africa Atlas of Nigeria. Les Editions J. A., 57 bis, rue d' Autenil, 750 16. Paris, 60-61.
- [21] Ojoye, S. (2008) Climae Change and Crop Production. Journal of Science and Technology. 2: 101-115.
- [22] Ojoye, S. (2012) Climate Change Impact on Water Resources and Adaptation Strategies in The Sudano-Sahelian Ecological Zone, Nigeria, Unpublished Ph.D Thesis, Submitted to The Depertment of Geography and Environmental Management, University of Ilorin, Ilorin.
- [23] Ologe, K.O. (2002), Relief and Hydrography of Nigeria: Africa Atlasses, Les Edition J.A
- [24] On line Nigeria (2002), Nigeria: Vegetation Accessed on October, 13, 2013 http://www.onlinenigeria.com
- [25] Oyebande, L. (2000) Wastewater and Storm water Management in Africa- regional Overview and information Sources: in International Source Book on Environmentally Sound Technologies for wastewater and Storm water management: Regional Overview and information Sources for Sub-Sahara Africa (ed. by G. Ho). UNEP-IETC, Japan.
- [26] REUK, (2013) The Renewable Energy Website. Reuk.co.uk
- [27] World Wildlife Fund (2001). Sahelian Acacia savanna. Wild World Ecoregion